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1. INTRODUCTION

There are numerous rearrangement-function inequalities in the literature,
connecting the rearrangements of functions, the rearrangements of their sharp-
functions, and the rearrangements of their maximal functions. These inequalities
arise naturally as consequences of good-1 inequalities, see for example [7], see
also [1,2,10, 11]. Let us recall one of the simplest such inequalities.

It is well known that for all >0 the Hardy-Littlewood maximal
function, Mf, satisfies,

w0 C [ s
o< [
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REARRANGEMENT-FUNCTION INEQUALITIES 215

(Here and in the rest of the paper C stands for a generic constant). More
generally, one can show that if 7" is a quasi-linear operator satisfying

NTf 1] o < CIIf 1y (L.1)
and
NTf 1l < ClIf 1l (1.2)
then
# C [«
@< [ r (13)
Since
sup sf*(s)~K(¢t,f; L(1,00), L)
O<s<t
and

t
[ =kwsire)
0
we see that (1.3) is equivalent to
K(t, Tf: L(1,00), LX) < CK (1, f: L', L), (1.4)

In retrospect, it is clear from the definition of the K-functional that (1.1) and
(1.2) imply (1.4). Thus the rearrangement-function inequality, (1.3), follows
from calculations of K-functionals.

Let us consider a second example. For the Hilbert transform, H, it follows
from results to be presented in Section 5 that, for every y > 1,

(H)* (1) = (HF () < C#) (5), (1)

where f# is the Fefferman-Stein sharp function.
This inequality follows from the continuity properties of H:

H:L'—L(1,00)
and
H:BMOw— BMO

which imply an inequality between K(¢, Hf; L(1,00), BMO) and K(¢,f; L',
BMO). This inequality together with calculations of K and E-functionals
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with respect to weak-type classes near the endpoints of interpolation scales
implies (1.5), and so proves the inequality for all operators with the same
continuity properties.

Weak-type classes were defined in [14, 15]. In some cases the weak-type
classes contain well-known spaces, such as BMO, which are natural range
spaces for classical operators. We will see that calculations with the K and
the E-functionals for interpolation couples which include the weak-type
classes, when applied to the L(p,q) scale, imply rearrangement-function
inequalities, such as (1.5), for important classes of operators. These
inequalities, which up to now were proved ad hoc, thus become part of
Real Interpolation Theory.

2. CALCULATION OF THE K-FUNCTIONAL
FOR SOME WEAK-TYPE CLASSES

Let (A, A1) be an interpolation couple. Here 4; are quasi-Banach groups,
that is to say, there exist functions |[[- ||, :4; HR+ so that [la][, =0«
a=0, lla|l,, =] —all, and [[ -], satlsfy the quasi-triangle 1nequahty

lla + b4, <ci([lallg, +[1b]]4,)-

Let

, 1
K (t,a; Ao, A1) = inf{(||aol|’y, + llarlly,)r s a0 + a1 = a,a; € 4;}.

We denote K| = K. In [15] we defined weak-type classes and showed their
usefulness in Real Interpolation Theory. It turns out that a somewhat more
general definition of these classes is more useful.

Let ¢ : R, —R,. We denote the least concave majorant of ¢ by ¢.

DEFINITION 2.1.  Let (4o, A1) be an interpolation couple. Let
g:Ry x (Ao + A1)~ Ry
be such that
g K(-,-; Ao, A1) (2.1)

For 0<e<oo, 0<r<oo, and 1<y<oo, we denote

1
||a||WK[AO-,AI;EJ'-,MI] = Slug) [gr(yla a) - 8rgr(lv a)]i (2'2)
>
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and

WK[A(),Al;S,)),}", g} = {a €Ay + A : ||a||WK[A0’Al ]<OO}

.09
If a function, g, appears as a parameter in W[4y, A1;¢,7,r,g] we assume
implicitly that it satisfies (2.1).

In [15] there is a similar definition of classes Wi (Ao, A1;¢,7,7,g). The only
difference is that in classes Wx (A, A1;¢,7,r,¢) it is assumed that

g K(-, -5 Ao, Ar). (2.3)

Of course, (2.3) implies (2.1) so that we will write Wk (4o, 41;¢,7,r,9) if
(2.3) holds. Also we denote Wx(Ag, A1;¢,y,r,K) by Wi(Ao, A1;¢,7,7).

In [15] we showed that the choice of r and g does not affect the
interpolation result, and one might be tempted to ecliminate these
parameters. However, since || - |y (4y.4,5r 1S defined by a difference,
replacing g by a function, g, satisfying

g g

may change the class Wg. In most cases K is known only up to equivalence
and we define g to be the expression calculated to be equivalent to the
K-functional.

The set Wx = Wk[Ao, A1;¢,7,1,9g] is, in general, not a group. However
there are cases where important spaces are embedded in Wk, see [15]. For
this reason we consider

K(Z,Cl; WK,Al) = inf{||a0||WK + t|\a1||Al rag+ay =a,ay € Wg,a, € Al}.
Thus if S is a space and || - ||, <C|| - ||g and @ € 4 + 4; we have
K(l,a; WK,Al)SCK(t,a;S,AI).

The interpolation theorem proved in [15] allows one to derive in a systematic
way interpolation theorems for the embedded spaces.

In this paper we take the next step: we relate K(¢,a; Wg|[Ao, 41;1,7,r1,¢],
Ay) to the parameter function g and so, indirectly, to K(z,a; Ay, A1). As will
become clear in the applications this will enable us, in the context of L(p, q)
spaces, to get rearrangement-function inequalities as corollaries of
continuity properties of operators on the endpoints of the interpolation
scales. These inequalities imply, of course, the continuity properties on the
intermediate spaces.

For the rest of the paper we will consider only the case ¢ = 1 in (2.2).
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DEFINITION 2.2.

1
g"\(t,a) = g"(t,a,7,r; Ao, A1) = sup (g (7s,a; Ao, Ay) — g’ (s, a; Ao, A1)]".

s<t

Observe that g" is the least non-decreasing majorant of the function
which defines the class Wx[Ao, 41;1,7,r,g]. Thus
1
lim ¢"(¢,a) = sup [g"(ys,a; Ao, A1) — g’ (s, a; Ao, A1)]".

[—00 >0
= ||a||WK[AO.,Al;ls,',r,g]'

It will turn out that ¢g” is equivalent to a K-functional which is, of course, a
non-decreasing function. Thus it is natural to take a least non-decreasing
majorant.

If (A4y, 4;) is an interpolation couple of Banach spaces then it is easy to
see that

K(Z,a +a';A0,A1)<K(I7 a; Ao,Al) + [||Cl/HAl.

Since we are considering functions, g, which satisfy only (2.1), and since we
are considering more general interpolation couples, we have to postulate a
similar condition in the following theorem.

THEOREM 2.3. Assume that g satisfies (2.1) and that there exist an integer
m=0, and a constant .= 0 so that for all a € Ay + Ay, d € Ay and all s > 0,
we have

g (s,a+d)<g (y"s,a) + As"||d'|[,- (2.4)
Then for every a € Ay + Ay and t > 0 we have
g/\(t,a)ScK(t,a; WK[A()7A1;1,'V,Y,Q],A1), (25)
1

1 1
where ¢ = 4r max{(m + 1)&)@)}.

Proof. We denote 4y = Wk[Ao, A1;1,7,r,¢g]. Since K is a non-decreasing
function, it suffices to prove

. 1 ~
[gr(yt7 a) - g, (Za a)]r SCK(L a; A07 Al)
Let n > 0 be given and let b € 4, be such that

181175, + ¢'lla = Iy, < KF(t,a; Ao, A1) + 1.
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Then
g'(vt,a) —g'(t,a) =[g"(vt,a) — g" (v, b)] + [ (v1,b) — ¢ (1, )]
+19'(1,b) = g'(1,a)]
<lg'Ot,a) =g (01, b))+ |IbI[, + 9" (2,0) — g (1, )]
But, by (2.4),

g (yt,a) — g'(yt,b) <g"("""'1,b) + iy'C'||a — b|y, — g (v1,b)

=Wyl |la— bl + mzol [ (" 1,b) — g ()", b)]
=
<Ayt ||la = b, + ml[b||,
and similarly
g'(t,b) —g'(t,a) =[g'(1,0) —g"(y""t,b)] + [¢"(y "1, b) — ¢ (1, a)]
<m||bl|g, + 27" —dll},.
Thus

gr(yt7 Cl) - gr(laa) <(2m + 1)||b

3, T A0+ 7" Nla — bl
<2max{m + 1; &y }(|[bI[, + 'lla — bI[}y,)
<2max{m + 1; 29" YK (t,a; A, A1) + 1)
and so

1
"

11 1 N
(9" (yt,a) — ¢'(t,a))r <2r max{(m + 1)r; Ary} K, (t, a; Ao, A1)

1 11 -
<4rmax{(m+ 1)r; iry}K(t,a; Ag, A1). 1

Remark 2.4. Given a function, ¢, the application of Theorem 2.3
requires verification of g~ K(-, - ; Ag, A;). The calculation of § is, in general,
not easy. The following result simplifies the problem in some cases.

We have already mentioned the least non-decreasing majorant of a
function on}IR+; let us introduce an appropriate notation. Given g : R, — R
we denote g(7) = sup,<, g(s).
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We state that ifémK( ,-; Ao, A1) then g K(- ,-,AO,AI)

For the proof denote K(-,-; 4y, 4;) by K. Clearly K = K. Since g<g and
gm K, we have §< (5)’\ < CK = CK. Conversely, since § is a non-negative
concave function on R, it is a non-decreasing function. Therefore 5<g and
so K<Cy<Cq.

The next theorem shows that Theorem 2.3 is, in a sense, best possible.
Taking g = K,(-, - ; Ao, A1), inequality (2.5) becomes an equivalence.

THEOREM 2.5. For every a € Ay + Ay and t > 0 we have

1
— K\t K(t,a; Wi(Ag, Ay 1,y,1,K,), A
C(C17V,V) )( a) ( a K( 0,411 7T ) 1)
<C(ey,r,y)KNt,a),
where ¢y is the constant in the quasi-triangle inequality for A,.

Proof. We denote Ay = Wx(Ao, A1;1,7,r,K,.).
Let us show that (2.4) holds for K, with /= c’1'2(”1)+ and m so that
Y =), 1e., forall a e Ay + 4y, d € A; we have
Ki(s,a+ ds Ao, A) <K/ (s, a; Ao, A1) + i |||l (26)
Let n > 0 be given. Let a = ay + a; where a; € A; are such that
llaoll’y, +7™"s"llar |y, <K (s, a5 Ao, A1) + 1.
Then

Kl (s,a+d; Ay, A)) =K](s,a0 + (a1 + d'); A, A1)
< aolly, + 5"l + ail'y,
< laolly, + QUD0)e s e[y, + UGS,

< KI(7"s,a; Ao, Ar) + 5"l |['y, +n,
which proves (2.6). From Theorem 2.3 it follows
K\(t,a)< Cer,r,7)K(t,a; Ao, Ay).
Let us show that

Kr(ta a; 1‘10,A1)< C(ClvraV)Kr/\(tv a)'
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For n > 0 we choose b € 4 so that
1611, + 7"t lla = bl <K: (v, a; Ao, Ay) + 1. (2.7)
We have

b1, + 7"t lla = bl[y, —n
<K (yt,a; Ao, A1)
= [K:(”/l, a; A07A1) — K:(L(l;Ao,Al)] +K:(l, a; Ao,Al)

<[K(t @)+ |Ibl1, + £'lla = bl
which gives us
(" = Df'lla = bI[y, <[K}(t.@)] + 1. (2.8)
Let us estimate

1
r

16114, = sup (K7 (s, b3 Ao, A1) — K} (s,b; Ao, A1)
5>

If 0 <s<t then, by (2.6),
K/ (ys,b; Ao, A1) — K (s,b; Ao, A1)
<K ("5 a; Ao, Ay) + 29" ||a — by, — K] (s, b; Ao, A))
<K (y™'s,a; Ao, A) — KL (y™"s, a; Ao, A1)
+ K (y™"s, a; Ao, A1) — K.(s,b; Ao, A1) + 2y's"||a — B[/, .
But
K (y™"s,a; Ao, A1) — K] (5,05 Ag, A1) <Ay™"'s'||a — bl|y <s'l|la = bl[,

and

K (y" s, a3 Ao, A1) — KL (y™"s, a; Ao, Ar)

2m
= (K" s, a; Ao, Ar) — K[ (" s, a3 Ao, A1)
=0

<(@2m+ 1)K (Y"t,a; Ao, A1)]".
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Hence
sup [K](ys,b; Ao, A1) — K] (s,b; Ao, A1)]

0<s<t

<@m+ DKt a)] + (1+ ") la = bl[},

so that by (2.8),
sup [K;(“/S, b; A(), Al) — K,’,‘(S, b; Ao, Al)]

0<s<t
(1+ 297

<@m+ DKL)+

([K\ (& @) + ).

We have shown that for 0<s<1¢

1
sup (K] (ys,b; Ag, A1) — K] (s,b; Ay, A1)]r < C(c1,r,7) (K] (Y"1, a) + 1).

0<s<t

Let us consider the case s > t:
K (s, b; Ay, A1) — K (s,b; Ay, A)
<lIbll’4, — K7 (2, b5 Ao, A1)
= [|blly, — Kl (y2,b; Ao, A1) + K[ (yt,b; Ao, A1) — K[ (t,b; Ao, A1)
<|IbIl}4, — K7 (v2, b; Ao, A1)
+ sup K] (7s.bi do. Ai) - Ki(s,b; Ao, A1)

<|Ibll4, — KJ (vt b; Ao, Ar) + Cler,r,y) KL ()"t a) + 1]

From (2.7) it follows that
|IbI4, < K7 (vt,a; Ao, A1) + 1

so that
K:(stb;AmAl) - K:(S7b;A05A1)

<K (yt,a; Ay, A1) — K[ (yt, b; Ay, Ay)
+ Cler, )K"t @) +n)" +n

=K/ (yt,a; Ao, Ay) — K.(y' "1, a; Ao, Ay)
+ K[ ()" a5 Ag, Ay) — KL (31, b; Ao, Ay)

+ C(er,r,y) K (y"t,a) + )" + 1.
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As before
K (yt,a; Ay, A1) — K,f'(yl’mt, a; Ao, A1) <m[K)(t,a)]".

Also, by (2.6),
K/ (y"™"t,a; Ao, Ay) — K[ (1, b; Ao, Ay)

<™ (") Nla = Bl

=9"t"|la = b|[,
and by (2.8)
r Vr r
V't ||la— Dbl <y’ — 1([Kr/\(t7 a)l" +n)
so that
K7 (vt a; Ao, A1) — K (71, b; Ao, A1)
<mK) (@) + g (KD ()] + )
< C(C17}’, V)([K)A(t7 a)]r + ’7)
<Clen, (K (") +n).
Thus

Kvl’:(‘ysab;AO,Al) - K:(S,b;A(),Al)

<C(er,r,y) (K ("t a; Ao, A1)] +1n) + 1.

This proves
16117, < Cler, ) IKE (7"t a5 Ao, AV + 1.

By (2.8) we have
Kvl’:(tva;/a();Al)

<Ibl3, + 'lla—=bll},

<C(er, ) [K("ta)] +n +

(K@) )

so that
Kr(t7a; 1&0, Al) < C(Cl 7 V)I(JA(ymta a)'
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Therefore
K, (t,a; Ao, A1) <y" K, (17" a; Ao, A1) < Cler, r,p)K) (1,a).

COROLLARY 2.6. We denote
1’41 = WK(AlvAO; 17y7r7KV)'

Then

K, (t,a; Ao, A1)t sup

t<u

()

1
(Kr(u,él;/lo,z‘ll) K"(Vu,a;Ao,Al)y

The following theorem connects Theorem 2.3 to concrete applications.

DEerFINITION 2.7. Let T be a mapping to measurable functions. We say
that T is subadditive if for all @, b in the domain of 7 both T'(a + b) < Ta +
Th and |Ta| = |T(—a)| hold.

THEOREM 2.8. Let (Ao, A1) and (By, B) be two interpolation couples.
Assume that By and By are spaces of measurable functions and that By is a
Banach lattice. Let T : Ay + A1 — By + By be a subadditive operator which

satisfies

1 Tally, 15,8109 < Mollall 4,5

| Tallp, <Millall 4,

Assume also that g satisfies condition (2.4).
Then for all t >0, y>1, r>0,and a € Ay + A,

M
Q(E Tay%'? BO) Bl)< CM()K(ﬁ[,CﬁAO,A]),
0

where C = C(y,r).
Proof. Let us denote in this proof
WK == WK[B(%BI; 1,')),}’7g].

Leta € Ag+ A4, and t,e > 0 be given. Let ay € Ag and a; € A; be such that
ay + a; = a and

llaolLs, + tller]l4, < K(2,a; Ao, A1) + &
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Then
K(t,Ta; Wk,By) =K(t, Ta — Tay + Tay; Wk, B;)
< ||Taolly, + tllTa — Tag| |,
But, since T is subadditive,
|Ta — Tag| <|Ta |
and since B; is a Banach lattice, we have

|Ta — Tao||p, <[|Tar]lp,

so that
K(1, Ta; Wk, Br) <||Taol|y, + t||Ta — Tag||p,
<[ Taol|y, + 1| Tar|[ ,
< Mollaol| 4, + Mt 4,
<M0(K<%t,a;Ao,A1> +e).
Thus

M
K(1, Ta; VI/,<,131)<M01<(M1 t,a;Ao,A1>.
0

We apply Theorem 2.3 to estimate K(z, Ta; Wk, B;) from below. Since, by
hypothesis, (2.4) holds,

M
g/\(l, Ta) < CK(t, Ta; WK,Bl)<CM()K<A41l,a;A0,A1). |
0

3. APPLICATIONS OF THE K-FUNCTIONAL

Let us consider first an inequality of Bagby and Kurtz [2]. If 7 is the
maximal Calderon—-Zygmund singular integral operator and .# is the
Hardy-Littlewood maximal function with respect to Lebesgue measure, and
if w is a weight function in the Muckenhoupt A, class then

(T9)" () < CLatf) (3) + (1) (20), (3.1)
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where the superscript o indicates rearrangement with respect to the measure
o(x) dx.

As an illustration of the applicability of the methods of Section 2, for
o =1 we will prove a somewhat more general inequality.

Maximal Calderén-Zygmund operators map L>® to BMO and L' to
L(1,00) so that the following result generalizes (3.1).

Let T be a subadditive operator which satisfies:

T:L'w— L(1,00),
T: L*+— BMO.
Then for all y > 1
(T () SC(T ) (atf )5(0) + (T ) (7). (3.2)

A related result was proved by Lerner [11].

With a stronger condition on the kernel of the Calderon—Zygmund
operator the maximal operator maps BMO to BMO:; this follows for
example from Theorem 4.7 in [8]. For subadditive operators which
satisfy

T:L'— L(1,00),
T:BMO+— BMO,

we can prove
(TN ()< CT, ) () () + (TF)* (1), (3-3)

where f# is the Fefferman—Stein maximal function. Both (3.2) and (3.3)
can be proved directly using the results of [3], and the identification
of the K-functionals for the pairs (L',L>®), (L', BMO), and (L(1,c0),
BMO).

We proceed with generalizations of these results. For example, instead of
the space L(1, 00) in the range we can take L(p, o0) or L? for any 0 <p <co.

We recall some definitions and results.

In the sequel all cubes have sides parallel to the axes. The letter Q will
stand for a cube. We say that a Borel measures on R, pu, satisfies the
doubling condition if for all cubes, Q,

,u(zQ) < C#,U(Q),

where we denote by 20 the cube which has the same center as Q whose side
length is twice that of Q0. We call ¢, the doubling constant. We denote by
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the measure
wMONE)
uw(Q)

The Hardy-Littlewood maximal function with respect to the measure u is
defined as

,UQ(E) =

A4 (5) = sup /Q | dig. (3.4)

We denote by f ** the non-increasing rearrangement of f* with respect to the
measure yu, if it exists. We will denote

frea( /f*u

When u is Lebesgue measure we write simply f*, f**.

In the sequel we continue to omit mention of the measure when we are
referring to Lebesgue measure. Also when the underlying space is R? we will
omit mention of the space.

We denote

fou= /Q £ dug.

Given a cube Qg we denote
1

740 =50 ([ =foul duo) 020 and 03 5

We also denote

) =supd / -t dig )03 x . (3.5)

If p = 1 we write f#* for fl#‘”.
It is well known that if u is a doubling measure then for all p > 0,

1/ W saso00 15 o

THEOREM 3.1 (Bennett et al. [3 ]). Let u satisfy the doubling condition with
doubling constant c,. Let 0<0<4 2 and f € Ll (1). Then for every cube, Q,
and 0<t<9u(Q) we have

(o)™ *"2(1) = (fIg)™"e(1) < C(u, d)((fTg)"#2) " *2(1). (3.6)
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The theorem is proved in [3] for p = Lebesgue measure. The proof, with
easy modifications, works for doubling measures.

For functions in L' (u) + L> () we get from (3.6) a similar inequality with
no restriction on ¢.

We apply (3.6) to fIy,) where Q(r) is the cube centered at 0 with side
length r. We get

%_/0 (fTow) ™" (s) ds — (fIgr) ™ "(2) SC(M,d)(fg(’rg‘)*’”(t)
SC(,u,d)(f#,u)*,u(t).

Clearly, as r /* oo, we have (fIy))**(t) /" f**(t) and so also

|
lim -
r—oo

t 1 t i
| 100 0 as =5 [rerisyas

so that we have for all ¢,

O L0 =1 [0 ds = f < Cna e (3)

provided f € L'(u) + L>(p).
Since Hf#‘”||oc“"|lf||BM0(m, (3.7) implies

sup (;/0 S (s) ds —f*,ﬂ([)) < C(w )1 paroge- (3.8)

>0

Bennett, DeVore, and Sharpley showed in [3] that the class of functions
which satisfy

sup (1 [ 1461 ds =40 ) <o

>0

is the rearrangement-invariant hull of BMO, which they called weak-L°.
There is no established notation for weak-L>°; we adopt Milman’s notation
[12] and write

Wl wre = S{‘ig(i/o [t (s) ds —f*’”(t)).

We will derive several expressions for the norms in weak type classes,
depending on the interpolation scales. The following two lemmas will be
used to prove the equivalence of the different expressions.
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LEMMA 3.2, Lety > 1 and 1<r<oo. If 0<h is a non-increasing function

then
1| /1 ! g
V‘[C/”)—
»r tJo

*
=
—~
~
S~—"
| S — |
N
7N
~ | —
o\
=
N———
|— ~ =
|
T
=
o\
\
N———

Proof. Let us consider the first inequality. We have
1 [ 'l ISRl ;
GL)-Glw)
tJo vtJo
1
7l 7
G0 Gl =)
r\t yz 1t J,
-1 71
L L)
r\t 0 ’))t
1 - 1
1y (I/t;l,)7 <(—lz {th'> ( 1 /Vthry
- 11 N\ Ly — 1)t

1 1
1_,\/71 <1 /l )7 ( 1 /"/I )7
= - -
r tJo (V_ l)l t

2]

The second inequality is trivial. For the third inequality we observe first
that from
1 "

— h=h(yt),
I(V_l) t (/)
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which holds for 0</ Y\, and y > 1 follows

! th h L h—h
—_ —_ <" p— —_ .
; /0 (1) /(V ., (M)

We apply this inequality below:
1 [ ; 1 1 - !
() -won<iGf ) i [or-woo)
2(1 h’) [ / W= yt]
r\t Jo vt

\._.

LemMma 3.3. If 0<h e LIOC(R+) is a non-increasing function and y > 1
then

t>0 t>0

sup [A(t) — h(yt)]«sup (i/ot h— h(t)).

For r=1, we also have

i [ v-0) ([ ) 0
roN "N
(L) -GL )

with the constants of equivalence depending on y and r only.
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Proof. The first equivalence was proved in [14]. The equivalence

Co\T N nONT
(L) w0 )um( ([ 0) (5 )

follows from Lemma 3.2. Since

G/Othrf_ Gl ,,)l g /Oth’)%_ G /Oth@s)rds)%

< (1 [ 4o -ntwyy )

< sup [A(s) — h(ys)]

s>0

and since

%/Oth—h(t)< G/Oth")r—h(t)

the lemma is proved. 1

231

We interpret (3.8) in terms of Wx[L>(u), L(p,o0)(u); 1,7,1,g] for g(z,f)

= ()
LemMmA 34. Ifp>0,y > 1, and
g(t.f) =fH ("),
then Wx[L*®(u), L(p,00)(1); 1,7, 1, 9] is well defined and

HfHWK[L“(y),L(p, )(w);1,y,1.9] Hf”WLoc

(3.9)

Proof. We need to show that g« K(-,-;L>(n), L(p,00)(r)). From

Holmstedt’s formula, see [5], follows

K(1,f; L(p,00)(u), L (u))~ sup sf**(s).

O<s<t
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Therefore
K(t,f; L (n), L(p,00) (1))

= K (4L, L% )1 sup sf )

0<s<%

=t sup 1f*’“(1> =1 sup M

O<r<s S sP o<r<s S

Let us see that

t sup g(s—;f)mg”(t,f). (3.10)

0<t<s

Clearly, from

t sup M<CK(t,f;L°°(u),L(P7OO>(u))

o<t<s S

follows

9(t.f) < CK (1,15 L= (1), L(p, 00) (1))

and since K is concave we have

g(t./) < CK(t./ L (u), L(p, 00)(n))-

Conversely,
g(s.f
K0, /5 L), L(p. o) () < Ct_sup 2L
o<t<s S
implies
o0 g(s.f
K(t: (0. Lip, o) () < €1 _sup 28T
O<t<s  §
But since § is concave, we have that &Yf) is a non-increasing function so that
g(s, -
! sup 96.1) g(t.f)

O<t<s 9§



REARRANGEMENT-FUNCTION INEQUALITIES 233

and so (3.10) holds. This implies of course that g« K(-,-;L>®(u),
L(p,00)(1)). Let us show (3.9). Since g is non-decreasing, we have

Hf‘|WK[L"C(u),L(p,oo)(y);l,y‘l,g] = szlig)[g(yt) - g(z)]+ = Sf‘ig)[g(’yt) - g(t)]

=sunlr () = ()]

= sup [f7(1) = /1G]

and by Lemma 3.3
W iz, Loy g W T B

,p 1
LemMMA 3.5. Letp=1, y> Loand g(t.f) = t(fy (f**))P. Then the class
Wi (L>®(u), LP(p); 1,7, 1,9) is well defined and

Hf”WK L>(p),Lr (p);1,,1,9) |IfHWL°“(y) (311)

Proof. From Holmstedt’s formula 1

(3 L), L (1)) r( / <f>) orf)  (.12)

so that Wx (L*>®(u), LP(p); 1,y,1,g) is well defined.
Moreover,

Wl w .t .1,9) = Sf‘ig (g0re.f) = 9(1,f))
~spln( [0 ) ([ o)
(L Loor) -Gl ror) )

and from Lemma 3.3 we have (3.11). 1

THEOREM 3.6. Let T:Ay+ Ay — L®(u) + L(p,00)(n) be a subadditive
operator so that for p > 0,

I Tallyp (0 <Mollall 4,

1Tal| 1y 0y < Millal] 4,
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Then for all t >0 and y > 1,

1
(Ta)*" (1) - (Ta)*’”(yosCMoK(% fﬂ,a;Ao,Al), (3.13)
0

where C = C(y,p).
Proof. Let g(t,f) =f**(t?) so that, by (3.9),

111 1 2 -

Wi [L> (u),L(p,00) (1);1,9P1,9]

To apply Theorem 2.8 we need to show first that (2.4) holds. 1
Let fi € L®(u) + L(p,00)(u) and f> € L(p,00)(p) and let 4 = (VZI)P. We
have

g(t.fi + 1) = -|-f2)*4‘(1> —( +f2)*,,l< 1 L1 1)

74 e e

W1 y—1
" #,5H
1 1
r Y\
< g<ypt7f1) + ()}_—1) l“ﬁ“L(pOO)(ﬂ)

1
= g())pl,f]) + lt“ﬁ‘ |L(p,oo)(u)

so that (2.4) holds.
By Theorem 2.8, and since the K-functional is a non-decreasing function,

1 1
g(yt, Ta) — g(t, Ta) <g"(1, Ta,yr, 1; L= (), L7 ()
M,
<SCMoK [ ==2t,a; Ay, A
0 (Mo a; Ao 1>
M L
SCMoK [ =Lyrt,a; Ay, A
0 (Mo/ a; Ag 1)
so that
s, —1 ,— s, — Ml 1
(Ta)™(7'177) = (Ta) () < CMoK 317t Ao,
0

which proves (3.13). 1
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COROLLARY 3.7. Let u and v be doubling measure and let
T L¥() + LI(v) — L™ () + L(p, o) (1)
be a subadditive operator. Assume that for p >0, 0<g<oo,

||Tf|‘BMO(y) <ZWOH](HLOC(V)’

NTF 1 Lipooy) < M1 og)-

Then

(T)*#(0) — () oy < Cotty (1) (1), (3.14)
where C = C(My, My, y,1,v,p,q).

Proof. Since u is a doubling measure,

WTF i o < CUTF | parogw (3.15)

and we can apply the previous theorem. We do so with 4y = L*(v) and
Ay = L4(v). Using (3.12), we get

(TF)**(2) — (Tf )M (y)) S CMy | ——— ! (F*)

1\ 1 0
MytP
M,

Since the right-hand side is a K-functional, we have
q

(a0 - @ eo<e| g [ | = (e

w

Since v satisfies a doubling condition,
q

(1) (1)t (1119 (1)

This is Herz’s Theorem, see for example, [4, Theorem 3.8, p. 122] where this
is proved for v = Lebesgue measure. The proof, with minor modifications,
holds for doubling measures.

Thus we have shown (3.14). 1
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Remark 3.8. Observe that if p =g =1, u=v = Lebesgue measure, we
get (3.2).

COROLLARY 3.9. Let u and v be doubling measure and let
T:BMO(®v) + Li(v) — BMO(u) + L(p,00)(p)
be a subadditive operator. Assume that for p > 0 and 0<g< o,

HTfHBMO(,u) SMOHfHBMO(v)’

NTF 1 Lipooy ) < M1 Lo

Then

q
(1) (1) = (1) () < Cff) (), (3.16)
where C = C(My, My, y,1,v,p,q).

Proof. As in the previous corollary, since p is a doubling measure, we
have (3.15) and we can apply Theorem 3.6. We do so with 49 = BMO(v)
and 4; = L4(v). From Corollary 3.5 and Remark 3.7 in [§]

K(t,f; BMO(v), LY(v)) =~ (£) " (°7)
so that we have (3.16). 1

Remark 3.10. Observe that if ¢ =p = 1 and u = v = Lebesgue measure
then

(T*(0) = (T () < CF)*(0)
and we have proved (3.3).

THEOREM 3.11. Let T:Ag+ Ay — L>®(u) + 1P () be a subadditive
operator so that for p=1,

N Tall () < Mollal] 4,

1 Tal| 1y < Millall 4,
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Then for all t >0 and y > 1,

1

(3 [azary)-(% ”((Ta)**”)”)‘l’

M, _1
<CM0K(—1t I’,a;Ao,A1>, (3.17)
My

where C = C(y,p).

Proof. Let

g(t.f) = t( /0 (f*,‘,)p)}a

so that by (3.11)

WTall (2 ). i1 3.1.9) 2 T e -

Let us see that condition (2.4) holds. We have, see [6],

([ wsror) < [oror)( [or)

so that if fj € L®(u) + L7 (u) and f, € LP(u)

1

G +A7 )
Fonf( )
[l

g(tvfl) tHfQHU’ (u)°

7f1 +]€2 :t

(-
<
(

-

<t

By Theorem 2.8,

1 M
g(yf’t, Ta) —g(t, Ta) < CMyK (ﬁlt, a; AO,A1>
0



238 SAGHER AND SHVARTSMAN

so that

1 1

w%z< / yl”((Ta)*vﬂ)P)"—z( [ waeyy

M,
< CMoK (2244, a; Ao, A
0 <Mo a; Ao 1)

which implies (3.17). 1

COROLLARY 3.12.  Applying Lemma 3.2 to (3.17) we get

(l/ot((Ta)*‘”)p)l%(Ta)*’“(yf) < CMOK(%I_}’,G; AO,A1>. (3.18)

t

Remark 3.13.  The hypotheses of Theorems 3.6 and 3.11 imply the same
interpolation result: for 0 <0 <1 we have

1Tl < €0, )l 4.1,
where py = t£;. The rearrangement-function inequalities are more sensitive
to the endpoint conditions. For p>1, inequality (3.13) which we get from
the weaker condition,

1Tall o0 < Millall 4,

in Theorem 3.6, is strictly weaker than inequality (3.18) which we get in
Corollary 3.12.

To see that we take 49 = L”, A = L*°, both spaces taken on R, with
Lebesgue measure, and denote by Cy and Cs two constants for which the
inequalities are valid. Thus we want to show that

1

(3 [y -anenscsn |1 [ &

<
<
=

t Jo ) (3.19)
is strictly stronger than
1
| Y
@y - @ye<cnsn |3 [N g | e
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We take

1
If = lpf = 4 (|f1"),

where ./ is the Hardy—Littlewood maximal function. The operator maps L/
to L(p,00) and L™ to itself and so certainly to WL>. It follows that (3.20)
holds. Let us see that (3.19) does not hold:

For every ¢ > 0 let

1

fot) = £1(0) = 7o ) ().

Thus, for 0<r<1,

(M) (1) = Myf 1 =( /(f* )” (@

so that

g 1%@*)}’)‘1’ -y

Inequality (3.19) would imply for all ¢ > 0

(p+ )1271 o < CyM 1/%))”’ 0 "
w5 | | +(Mpfe) " (70)

e
1 M L .
D +s); o\ e 1
= Cy M| —t vt) pte
( . ( w 1(M1 > +(y1) )

and so does not hold.
Let us consider a version of Theorem 3.11 for 0<p<1.

THEOREM 3.14. Let T: A+ Ay — L>®(u) + LP () be a subadditive
operator so that for 0<p<1,

I Tal” < Molall 4,

IIWLW

1 Tal| 1 < Millall 4,
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Then for all t >0 and y > 1,

(3 [ararmy -2 }'l<<Ta>*’*‘>”)’i

M, 1
<SCMoK (2577, a: Ay, Ay ). (3.21)
M

Proof. We take

ote.0)=o( | <f>)

Thus
11 Wi (L> (1), Lr (1);1,7.0.9)

—sup (O1.f) — P (1S))P

>0

= (W’< OWWU*‘%") oy ( / U.*,H)p)y
gl [l L[y

and, from Lemma 3.3 with 42 = (f**#) and r = 1, we have
1
1 r! P e »\?
Wl 2po0rmat e 9P [ U7 = (F75(0))

= Hlf\’]IIWLx

Let us see that condition (2.4) with r = p holds. If f; € L*>°(¢) + L?(¢) and
f» € LP(n) then

susir) = [ () ) ds
<ﬂ'/ 7 G718) + £ (=77 )s)) ds
< tp/o " ts)) ds+t"’/0 (1 =y~ )s))P ds
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i 1’p/0m(fz*’“(s))” ds

P
ye?

<yt (f;" " (5))P ds +
0

— PO +-

L1

By Theorem 2.8 |

1 P Ml
(¢ (0.70) - 0. 70) | <otk (v asdo. )
0

vl
(“/t”/ ((Ta)**)y t"/ ((Ta)*™") )
0 0

<CM()K< t, a; A(),Al)

so that

which implies (3.21). 1

COROLLARY 3.15.  Applying Lemma 3.2 with h = (Tf)** and r =1, to
(3.21) we get

GACORE ((Ta)*v”)”(m)’l’ <Cok (gt rasdo. )

t

4. CALCULATION OF THE E-FUNCTIONAL FOR SOME
WEAK-TYPE CLASSES

DEfFINITION 4.1.  Let (Ap,A;) be an interpolation couple of quasi-
Banach groups. We define

E(t,a; Ao, A1) = inf{||a — aol| 4, : |laol| 4, <1}

This definition is consistent with that of [5]. To state the results in a form
which is consistent with the results of Section 2 we will work with E(¢,a;
Ay, Ap) and in the sequel we denote

E(l, a) = E(l,a;Al,Ao).

DErFINITION 4.2.  Given h:R,+— R, we define the greatest non-increas-
ing minorant of /:

N\
K(t) = inf h(s).

st
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DEFINITION 4.3 (Sagher and Shvartsman [14]). Let 4: Ry x (4o + 4;)
—[R,. Assume that there exists f>1 so that for all a € 4o + 4, and all
t>0

1N
- h
B

We define for 0 <r<oo and y > 1

1

t t r
oo =SUp|A (- a) — "h"(—, )
Ha”W];(Ao,A],A‘/J,h) t>103|: (V (l) € P a :|

(bt ) <E(t,a) <ﬁ2<é, ) (4.1)

and
Wg(Ao, Ar;e,p,r,h) ={a € Ag+ Ay : ||a\|WE(A07AI;nW’h> <oo}.
In this paper we consider only the case ¢ = 1.

We denote Wg(Ay, Ar;1,y,r, E) by Wg(Ay, A1;1,7,7).
We reserve the letter / in this section for functions which satisfy (4.1).

DEFINITION 4.4.

1
hb(t, a) =K (t,a,y,r;Ag, A1) = sup (h’ (;, a) — (s, a)) ' . (4.2)
+

s>t

The next theorem is the analog, for the E-functional, of Theorem 2.3.

THEOREM 4.5. Assume that there exists an integer, m=0, so that for all
a€ Ao+ Ay and all d' € Ay such that ||d'|| 4, <t

h(y"t,a+d")<h(t,a). (4.3)
Then
("t a) < cE(t,a; A, We(Ao, A 19,7, b)),
where ¢ = (2m + l)rl
Proof. We denote
Ay = Wi (Ao, Ar; 1,7, 1, h).

Let n > 0 and a; € A; be such that ||a||,, <?, a —a) € Ay, and so that

lla — a1l 5, <E(t,a; 41, Ao) + 1.
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For all s>7"'t we have
n (5, a) —W(s,a)=h" <§, a) — Ky sa—ay)
Y Y
+ h’(y’m’ls,a —a) —h("s,a—a)
+ K(y"s,a—ay) — K (s,a).

Since [|ai||,, <t<y™™'s, by (4.3) we have h(y"s,a — a;) <h(s,a). We also
have

h (57 a) <h(y™ 's,a—ay)
so that
i (y ) — I (s,a) <K (" Ns,a—ar) — W ("s,a - ay)

2m
= Z (hr(Vj7M7lS7 a— al) - hr(']/ims, a — (ll))
j=0

N

2m+1Dlla —allly,
<(2m+ 1) (E(t,a; Ay, Ag) +1)".
Thus
1 N
R (" a)<(2m+ 1) E(t,a; Ay, Ao). 1

The next theorem shows that Theorem 4.5 is, in a sense, best possible. If
we take h = E(-,-; A1, Ay) we have:

THEOREM 4.6. Let ¢; be the constant in the quasi-triangle inequality for
Ay and let m be such that 2¢y <y™. Then for allt > 0 and a € Ay + Ay we have

1
ZE?(ym+1Z7 a) <E(I7G;Al; WE(A07A]; 17?7 r)) <CEb(’yl? Cl), (44)

1
where ¢ = 2m + 1)r.
Proof. We denote
Ay = Wg(do, 415 1,7,7).

Let us prove that (4.3) holds with m so that 2¢; <y™.
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Let a; € A; be such that ||al||Al <t, a—ay € Ay, and
lla —ar|| 4, <E(1,a) + 1.
Let d' € A; be such that ||d'|[ ,, <t. Then ||a; + d'|| ;, <2¢1t<y™t so that
E("ta+d)<||(a+d) — (@ +d)l|, <E(t,a) +1

and (4.3) holds.
From the previous theorem

1 ~
— L B a) < B a Ay, Ay).
2m+ 1)r

Conversely, given n > 0 we have a; € 4; so that ||a ||A1 <t, a—ay € Ay
and so that ||la — ai|| 4, <E(t,a) + 1. We will show that

E(t,a; A1, Ao) <|la — ai|

Ay
1
= sup (E" <£, a— al) — E'(s,a — al))
s>0 Y
1
<@m+ 1V)rE (yt,a) + 1. (4.5)

We consider first s=>7""1t:

E (f,a - al) —E(s,a—a)) =E" (f,a - a1> —E'(y7" 's,a)
Y Y
+ E'(y7"'s,a) — E'(Y"s, a)

+ E'(y"s,a) — E'(s,a — ay).
But by (4.3)
E"(y"s,a) — E"(s,a —a;)<0

and

E” (E,a - al) — E'(y7" 1s,a)<0
Y



c l’ld Sl‘n € < l< 2
a C ay A X S7

E (f, a— al) — E'(s,a—ay)) <E(y"" 's,a) — E'(y"s, a)
Y

2m

=3 (EG s 0) - B a)

Jj=0
<@2m+ 1)[E (yt,a)].

If 0<s<y"*'t then

E (g,a — al) —E'(s,a—ar) <|la—all|y, - E(y"t.a—a)
<E(t,a)+n—E (" a—a)
=E'(t,a) +n— E"(y"""'t,a)

+ E'(y?" Mt a) — E'(y" i a — ay).
But by (4.3)
E ("t a) — E'(y" 't a — a)) <0.

Also,

2m
Er(l‘7 Cl) _ E"(’))2m+1t7 a) — Z (Er(V/[, a) _ E"(yHll,a))
j:

< (2m+1)(E) (y1,a).

(=]

Thus for 0 <s<y""!t also
F <;’a - al) — E'(s,a —a))<(2m+ 1)((E") (y1,a) + )

and so
~ 1 . 1
E(t,a; A1, Ao) < (2m + V)7 ((E") (yt,a) + n)7
proving (4.5). 1

Remark 4.7. 1f || - || ;, is a non-Archimedian metric, i.e.,

llar + aa|| 4, <max{{lan] 4, [az] 4, }
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then it is easy to see that m = 0 and hence

Eb(ytaa) = E(ta a;Ala WE(AO,AI; 1,')),7'))-

5. APPLICATIONS OF THE E-FUNCTIONAL
We recall:

DEFINITION 5.1 (Peetre and Sparr [13]).

Wl oy = w{lf1 > 0}
and
L) = {f 1l oy <00}
LEMMA 5.2.  On any o-finite measure space (2,2, ),
‘lf“WE(Lx(pLLO(u);l,y,l)m'lf”WLOC(;;)'
Proof. Since
E(t,f; L (1), L™(n)) = £ **(1) (5-1)

see [13], we have by Lemma 3.3

W W0 :1.0.1)

=sup (E(t.f5L%(n), L)) — E(ye, f3 L0 (1), L™ (1))

>0
= sup (£ (1)~ (p0)sup (140~ (0) = [ g 8

For the rest of the paper, u stands for a Borel measure on R?.
We define the John—Stromberg maximal function.

DEFINITION 5.3 (John [9] and Strémberg [16]). Given a measurable
function, f, on RY, we define

MEFf(x) = sup inf (f —c)*He(s).

[ =R

Again if u = Lebesgue measure we omit mention of the measure. If
we need to mention Lebesgue measure, we denote it by 1. We recall, [9]:
f || garo |47 £~ for all s<i. The constants of equivalence depend on
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s,d, of course. A more delicate result, see [16], is

1
sup inf (f —c)*"@ (§—>

V‘Hf”BMo-
Oox ¢

Lo

If p is a doubling measure then there exists s; = s1(d, u) > 0 so that for all
0<s<s; we have, see [17]:

W W sssoq 121 L -

A more precise result holds. Let 0 <p <oo. By Chebycheff’s inequality we
have for every cube, Q, constant, ¢, and any 0<s< 1

(/ =t dug)'l’— ( / (f — (o) dt)i S1f — o He(s)sr

so that

MFI(x) = sup inf (f — )" (s)

O>x ¢

1
1 » 1
<s P sup in (/ If —cf d,uQ>p: s I’fp#’“(x). (5.2)

oox ¢

Recall the definition of .#,, see (3.4), and define

My = LU

Let 1 be a doubling measure. Then there exists a constant, C = C(s,p, i, d)
so that for f € LF(u) + BMO(p) and 0<s<us;(p, d),

! #.1 #.1 H,1

My M () ) < ol g M (), (5.3)
where ];#‘“ is the Fefferman—Stein maximal operator, defined in (3.5). The
proof of this inequality for Lebesgue measure in [§] holds in this context and
(5.3) shows that taking .#, , of /%f"‘f (x) in (5.2) transforms the inequality
to an equivalence.

THEOREM 5.4. If w is a doubling measure on R? and f € LO(p) + L= (p)
then for all 0 <s<s1(u,d) we have
t

SR =) < CLuEn (), (5.4)

where C = C(u,d,y,s).
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Proof. By (4.4) with r =1 we have for m so that " >2,

E (", )< @m+ VDE(Lf5 LO(n), We(L (1), L0(1); 1,7, 1)).
By (5.1) and (4.2) it follows that
f*”u())ml‘) _f*,/l(y’71+1t)
<@m+ DE(f3 L), We(L® (1), L(1); 1,7, 1)).
From Lemma 5.2,
Hf”WE(Lm(u),LO(M);l,y,l)V‘||f||WLoc(ﬂ)
and since, see (3.8),
|lf||WL°<(ﬂ) <C(u,d)|lf| ‘BMO(u)
we have
LG = G ) < Cu dyy) E(,f 5 L0 (1), BMO(u)).

The E-functional between L°(u) and BMO(u), where p is a doubling
measure, was calculated in [8]:

CL (M) M (Cot) S E(t f; L0 (1), BMO(w)) < C3 (MFHf) ' (Cat)
provided 0 <s<s;(u,d) proving (5.4). 1

Lerner [10] proved a related inequality. To state Lerner’s inequality we
need to recall the definition of A., weights.

DEFINITION 5.5. A positive function, w € L, is said to be an A
weight if there exist constants c¢,,d > 0 so that for all cubes Q and all
measurable £< Q we have

where 4 is Lebesgue measure.

We write o also for the measure w(x) dx. Thus we write w(E) for [, o,

and wg(E) = wfj;g The A, condition is therefore

wg(E) < coip(E).
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It is well known that if w € A then w is a doubling measure; also L> (1) =
L>®(w).

Lerner’s theorem states: if € A then there exists sy = so(w) > 0 so that
for all s € (0,50)

£20() _f*A,cU(zt)<2(ﬂf£f)*’w(2t). (5.5)

With the added hypothesis on the measure, (5.5) has the sharp-function,
,ﬂff ,1.e., taken with respect to Lebesgue measure, instead of with respect to
the measure, u = w dx as in (5.4).

Let us see how we can get (5.5) (with larger constants) from (5.4). From
the definition of A follows that if f is a measurable function then for every
cube, Q,

*2(1) < Clw)f *7e (5) .

Therefore,
, |
sup inf [f — ¢[*2(r) < C(w) sup inf |f — c|*7 (15)
Q c Q C

so that
MECL(x) < Clw) AT S (x)

see Remark 2.11 in [8]. From Theorem 5.4 it follows that for all s € (0,s9)

*,(0 t
frew £ <) () (5.6)
and we have proved (5.5).
Bagby and Kurtz [1] proved that if w € A, then for every f € L, (o) the
following inequality holds:

e <O 220 +f = (21). (5.7)

The term (f#)** is the non-increasing rearrangement of /# with respect to
the measure w. The function f/# is however taken with respect to Lebesgue
measure. The conclusion is, by (5.2), weaker than (5.6), and so the question
is whether the hypotheses are the same. Indeed, in addition to the condition
S €Ll .(w) there is an implicit assumption in [1], that f* exists. This
together with f € L] (w) is equivalent to f € L'(w)+ L* and so (5.6)
implies (5.7).

It was also observed in [10] that (5.6) implies (3.1) with different constants.
Using Lerner’s ideas we can show a somewhat stronger theorem. We have
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shown

(T9)" () = (T) () < Lt (1)) ().

By Theorem 4.6 in [8], if T is Calderon—Zygmund operator which satisfies a
certain continuity condition, A4, then for all sufficiently small s,

ME(TF)(x) < C(AMf)(x)

so that
t

() (1) = (T () < () (§):

which is (3.1) with different constants.
If T is Calderén—Zygmund operator which satisfies a stronger continuity
condition, see Theorem 4.7 in [§], then

ME(TS) ()< C(7)(x),

which implies

t

(1) (1) = () () <) ().
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